```
        E-Content
    Topic: Chemical Equilibrium (part II)
    Physical Chemistry
B. Sc. Chemistry (H) 2nd Year
```

```
By
    Miss Ipsha Shruti
Department ofChemistry
A.s. College, Bikramganj
```


Thermodynamics of Law of Chemical Equilibrium:

Let us consider a general reaction,

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

The chemical potential of a substance in a mixture is

$$
\begin{equation*}
\mu=\mu^{0}+R T \ln a . \tag{i}
\end{equation*}
$$

Where μ^{0} is the chemical potential of pure substance in standard state of unit activity, (a)
R is the gas constant and T is the absolute temperature.

For a mole of the substance A we can write using the equation (i)

$$
a \mu_{A}=a\left(\mu^{0}+R T \ln a_{A}\right)
$$

And similarly,

$$
\begin{aligned}
& \mathrm{bpg}=\mathrm{b}\left(\mathrm{jz}^{\circ} \mathbf{4} \mathfrak{£} 1 \text { Inep }\right) \\
& \mathrm{cJzg}=\mathrm{r}\left(\mathrm{jz} \mathrm{z}^{\circ}-1-\mathrm{APIn} \mathrm{op}\right) \\
& \mathrm{dpp}=\left(\mathrm{yr}^{\circ} \mathbf{4} \text { fifilnnp }\right)
\end{aligned}
$$

The change in hee energy for ie reaction is given
pe'ndn rt:e 'e'rnrOnxPo

On subshtution we get

$$
\begin{aligned}
& =\left[\left\{c \mu_{C}^{0}+d \mu \mu_{D}^{0}\right\}-\left\{a \mu_{A}^{0}+\mu_{Q}^{0}\right\}\right]+R T \ln \frac{a\{\times a g:}{a<a \times a\}}
\end{aligned}
$$

Where fiP' is the difference in free energy of the reaction wheu all reactauts aud products are in theii standard state.
It is given by

$$
=
$$

Or, equation (ii) can be written as,

$$
\mathrm{A} \mathrm{G}=\mathrm{fi} \mathrm{G}^{\circ}+\mathrm{RTO} \mathrm{Q} \quad \quad \cdots \cdots \cdot \cdot(\mathrm{ii1})
$$

Where Q 1s the reaction quotieut of activities of the product and reactauts.

As $B G^{\prime}$ is constant at given temperature. Also, the gas constant R and T are constant, the factor Q is \&so constant
So,

From equation (iii) we have

$$
\mathrm{A} \mathrm{G}^{\circ}=-\mathrm{RT} \mathrm{~A} K
$$

The equation (iv) is called van't Hoff Isotherm. It may be used to calculate the change in fiee energy of a reaction in the standard ($f i G^{i 3}$) from ie equilibrium constant and vive -versa.

The sign of fiti ${ }^{\circ}$ indicates whether the forward or reverse reachon is spontaneous. Considering the equation (iv), we can have three possibilities depending on the sign of fitio for the reaction.
(1) If AG° is negative, $\log \mathrm{K}$ must be positive and the reaction proceeds spontaneously in the forward reaction.
(2) If $f i G^{\prime}$ is positive, $\log \mathrm{K}$ must be negative and K is less than one. The reverse reaction is then spontaneous.
(3) If $f i G^{\prime}-0, \log K-0$ and $K-1$. The reaction is at equilibrium.

Some exercises related to previous part:
-1. Determine whether the following reactions favor high or low pressures?

- (a) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})$;
-(b) $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$;
- (c) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$;
-(d) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$;
- (e) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{HF}(\mathrm{g})$;
- 2. Determine whether the following reactions favors high or low temperature?
- (a) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=-180 \mathrm{~kJ}$
- (b) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=-46 \mathrm{~kJ}$
- (c) $\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{COCl}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{0}=-108.3 \mathrm{~kJ}$
-(d) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}^{\circ}=+57.3 \mathrm{~kJ}$
-(e) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) ; \Delta \mathrm{H}^{\circ}=-270 \mathrm{~kJ}$

References

- Physical chemistry: K.LKapoor
- Physical chemistry By Atkins.
- Physical chemistry By P.C. Rakshit.
- Principles of chemistry By Puri, Sharma and Pathania.
- NPTEL onlinematerials

