# Numerical problems based on first law of thermodynamics 

B.Sc. Part- I. (Physics honours\& Subsidiary)

## By

Dr. Rakesh Kumar Ranjan
Assistant Professor
Department of Physics, A.S.College
Bikramganj, V.K.S.University, Ara Email id:-ranjan.rakesh130@gmail.com Mob: 870930 4765, 9534531001

# Numerical problems based on first law of thermodynamics 

Ex. 1:- The volume of steam produced by $1 g$ of water at $100^{\circ} \mathrm{C}$ is $1650 \mathrm{~cm}^{3}$. Calculate the change in internal energy during the change of state. Given $J=4.2 \times 10^{7} \mathrm{erg}_{\mathrm{cal}} \mathrm{cal}^{-1}, \mathrm{~g}=981 \mathrm{~cm}$ $\mathrm{s}^{-2}$, Latent heat of steam $=540 \mathrm{cal}, \mathrm{g}^{-1}$.

Sol $l^{n}$ :- $\quad$ Here, mass of water $=1 \mathbf{g}$

- Initial volume of water, $V_{1}=1 \mathrm{~cm}^{3}$

Volume of steam, $V_{2}=1650 \mathrm{~cm}^{3}$

Change of internal energy, $d U=$ ?

As the state of water is changing

$$
\square d Q=\quad \mathrm{mL}=1 \times \mathbf{5 4 0} \text { cals. }
$$

$$
\begin{aligned}
& =\quad 540 \times 4.2 \times 10^{7} \mathrm{ergs} . \\
& =\quad 22.68 \times 10^{9} \mathrm{ergs} .
\end{aligned}
$$



Taking $P=1$ atmosphere

$$
\begin{aligned}
d W & =P d V=P\left(V_{2}-V_{1}\right) \\
& =76 \times 13.6 \times 981(1650-1) \\
& =76 \times 13.6 \times 981 \times 1649 \mathrm{ergs} . \\
& =1.67 \times 10^{9} \mathrm{ergs} .
\end{aligned}
$$

As,

$$
d Q=d U+d W
$$

$$
\square d U \quad=\quad d Q-d W
$$

$$
=\quad 22.68 \times 10^{9}-1.67 \times 10^{9}
$$

$$
d U=21.01 \times 10^{9} \mathrm{ergs}
$$

Ex. 2:- $\quad 1 g$ of water at $373 K$ is converting into steam at the same temperature. The volume of $1 \mathrm{~cm}^{3}$ of water becomes 1671 $\mathrm{cm}^{3}$ on boiling. Calculate change in internal energy of the
system if heat of vaporization is $540 \mathrm{cal} . \mathrm{g}^{-1}$, Given standard atmosphere pressure is $1.013 \times 105 \mathrm{Nm}^{-2}$.

Sol $l^{n}:-\quad$ Here, mass of water, $\mathrm{m}=1 \mathrm{~g}$

- Initial volume of water, $\mathrm{V}_{1}=1 \mathrm{~cm}^{3}$

$$
\text { Volume of steam, } V_{2}=1671 \mathrm{~cm}^{3}
$$

- Change in volume, $d V=V_{2}-V_{1}$

$$
\begin{aligned}
& =\quad 1671-1=1670 \mathrm{~cm}^{3} \\
& =\quad 1670 \times 10^{-6} \mathrm{~m}^{3}
\end{aligned}
$$

Standard atmosphere pressure,

$$
\mathbf{P}=1.013 \times 10^{5} \mathrm{Nm}^{-2}
$$

As change of state is involved,
$\square d Q=m L=1 \times 540 \times 4.18 \mathrm{~J}$
$=2257 \mathrm{~J}$

Change in internal energy, $d U=$ ?

$$
\begin{aligned}
d W & =P d V \\
& =1.013 \times 10^{5} \times 1670 \times 10^{-6} \\
& =169.17 \mathrm{~J} \\
\text { From } d Q & =d U+d W \\
d U & =d Q-d W \\
& =2257-169.17 \\
d U & =2087.83 \mathrm{~J}
\end{aligned}
$$

## Ex. 3:-

Calculate work done to compress isothermally $1 g$ of hydrogen gas at N.T.P. to half its initial volume. Find the amount of heat evolved and change in internal energy. Given $\mathrm{R}=8.31 \mathrm{~J}_{\text {mole }}{ }^{-1} \mathrm{~K}^{-1}$. Sol ${ }^{n}$ :-

$$
\begin{aligned}
\boldsymbol{W} & =2.3026\left(\frac{\boldsymbol{R}}{\boldsymbol{M}}\right) \boldsymbol{T} \log _{10}\left(\frac{\boldsymbol{V}_{2}}{\boldsymbol{V}_{1}}\right) \\
& =2.3026 \times \frac{8.31}{2} \times 273 \log \left(\frac{1}{2}\right) \\
\boldsymbol{W} & =-786.7
\end{aligned}
$$

## Amount of heat evolved

$$
\begin{aligned}
& =\frac{786.2}{4.2} \mathrm{cal} \\
& =187.2 \mathrm{cal}
\end{aligned}
$$

As the change is isothermal, temperature remains constant. Internal energy of the gas also remains constant. Hence change in internal energy is zero.

Ex. 4:- Water of 1 kg mass at 373 K is converted into steam at the same temperature. On boiling, 1 c.c., of water takes a volume of 1671 c.c., Calculate the change in internal energy of the system, taking the heat of vaporization to be 540 cal. $g^{-1}$.

Sol ${ }^{n}$ :-
Here, $m=1 \mathrm{~kg}=10^{3} g$

- Initial volume, $\mathrm{V}_{1}=10^{3}$ c.c.,

Final volume, $V_{2}=1671 \times 10^{3}$ c.c.,

$$
\begin{aligned}
P & =\text { atmosphere } \\
& =1.013 \times 10^{6} \text { dyne }^{2} \mathrm{~cm}^{2}
\end{aligned}
$$

From first law of thermodynamics

$$
\begin{aligned}
& d \boldsymbol{U}= \boldsymbol{d Q}-\boldsymbol{d} \boldsymbol{W}=\boldsymbol{m} \boldsymbol{L}-\mathbf{P}\left(\mathbf{V}_{\mathbf{2}}-\mathbf{V}_{\mathbf{1}}\right) / \mathbf{J} \\
&==10^{3} \times 540-\frac{1.013 \times 10^{6} \times 10^{3}(1671-1)}{4.2 \times 10^{7}} \\
& d \boldsymbol{U}=540 \times 10^{3}-40.16 \times 10^{3} \\
&= 499.84 \times 10^{3} \mathbf{c a l} .=499.84 \mathbf{k} \text { cal } .
\end{aligned}
$$

## Thank You <br> Dr.Rakesh Kumar Ranjan

