# Numerical problems based on Isothermal and adiabatic process 

B.Sc.Part- I. (Physics honours\& Subsidiary)

$$
B y
$$

# Dr.Rakesh Kumar Ranjan 

 Assistant ProfessorDepartment of Physics A.S.COLLEGE Bikramganj, V.K.S. University, Ara Email id:-ranjan.rakesh130@gmail.com Mob : 870930 4765, 9534531001
$\qquad$

# Numerical problems based on Isothermal and adiabatic process. 

Ex. 1:- A certain gas at atmospheric pressure is compressed adiabatically so that its volume becomes half of its original volume. Calculate the resulting pressure in $\mathrm{Nm}^{-2}$.

Take $\square=1.4$, for air,
Sol ${ }^{n}$ :- Let the original Volume.

$$
\mathbf{V}_{1}=\mathbf{V}
$$

] Final Volume, $\mathbf{V}_{2}=\mathbf{V} / 2$

Initial pressure $\mathbf{P}_{\mathbf{1}}=\mathbf{0 . 7 6}$ meter of $\mathbf{H g}$ column

Let $P_{2}$ be the final pressure after compression.

As the change is adiabatic,

$$
\therefore \quad \boldsymbol{P}_{1} \boldsymbol{V}_{1}^{\gamma}=\boldsymbol{P}_{2} \boldsymbol{V}_{2}^{\gamma}
$$

or


$$
\begin{aligned}
& \boldsymbol{P}_{2}=\boldsymbol{P}_{1}\left(\frac{\boldsymbol{V}_{1}}{\boldsymbol{V}_{2}}\right)^{\gamma}=\boldsymbol{P}_{1}\left(\frac{\boldsymbol{V}}{\boldsymbol{V} / 2}\right)^{1.4} \\
& \boldsymbol{P}_{2}=0.76 \times(2)^{1.4} \\
& \boldsymbol{P}_{2}=2.00 \text { metre of } \mathbf{H g} \text { Column }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { As, } & \mathbf{P}=h \square g \\
\square \quad & \mathbf{P}_{2}=2.00 \times\left(13.6 \times 10^{3}\right) \times 9.8 \mathrm{Nm}^{-2} \\
\\
& \mathbf{P}_{2}=2.672 \times \mathbf{1 0}^{5} \mathrm{Nm}^{-2}
\end{array}
$$

Ex. 2:-

A gram molecule of a gas at $127^{\mathbf{0}} \mathrm{C}$ expands isothermally until its volume is doubled. Find the amount of work done and heat absorbed.
Sol ${ }^{n}$ :-
Here, temperature of the gas,
$T=273+127=400 K$

Let initial volume of the gas, $\quad \mathbf{V}_{1}=\mathbf{V}$
$\square \quad$ Final volume of the gas, $\quad V_{2}=2 V$

In an isothermal expansion,


Work done $(W)=2.3026$ RT $\log _{10} \frac{V_{2}}{V}$

$$
\begin{aligned}
& =2.3026 \times 8.3 \times 400 \times \log _{10} \frac{2 \boldsymbol{V}}{\boldsymbol{V}} \\
& =2.3026 \times 8.3 \times 400 \times 0.3010
\end{aligned}
$$

Or

$$
\mathrm{W}=2.30 \times 10^{3} \text { joule }
$$

If $H$ is the amount of heat absorbed,

$$
\boldsymbol{H}=\frac{\boldsymbol{W}}{\boldsymbol{J}}=\frac{2.30 \times 10^{3}}{4.2}=548 \mathrm{cal} .
$$

Ex. 3:- A cylinder containing one gram molecule of the gas was compressed adiabatically until its temperature rose from $27^{\circ} \mathrm{C}$ to $97^{\circ} \mathrm{C}$. Calculate the work done and heat produced in the gas $(\square=1.5)$.

Sol ${ }^{n}$ :- $\quad$ Here, initial temperature, $\mathrm{T}_{1}=27^{\circ} \mathrm{C}=273+27=300 \mathrm{~K}$
final temperature, $\mathbf{T} 2=97^{\circ} \mathrm{C}=273+97=370 \mathrm{~K}$ When a
gas is compressed adiabatically, work done on
the gas is given by

$$
\begin{aligned}
\boldsymbol{W} & =\frac{\boldsymbol{R}}{(1-\gamma)}\left(\boldsymbol{T}_{2}-\boldsymbol{T}_{1}\right) \\
& =\frac{8.3 \times(370-300)}{1-1.5}
\end{aligned}
$$

or

$$
\boldsymbol{W}=-11.62 \times 10^{2} \boldsymbol{J}
$$

■ Heat produced,

$$
\boldsymbol{H}=\frac{\boldsymbol{W}}{\boldsymbol{J}}=\frac{11.62 \times 10^{2}}{4.2}=276.7 \mathrm{cal} .
$$

Ex. 4:- The $P$ - $V$ diagram for a cyclic process is a triangle $A B C$ drawn in order. The co-ordinates of $A, B C$ are $(4,1),(2,4)$ and $(\mathbf{2}, 1)$. The co-ordinates are in the order ( $\mathbf{P}, \mathrm{V}$ ). Pressure is in $\mathrm{Nm}^{-2}$ and volume is in liter. Calculate work done during the process from $A$ to $B, B$ to $C$ and $C$ to $A$. Also calculate work done in the complete cycle.
$S o l^{n}:-\quad$ The $P$ - $V$ diagram drawn as per the questions is shown in Fig.

(i) Work done during the process from $A$ to $B$ (expansion)

$$
\mathbf{W}_{\mathrm{AB}}=+\operatorname{area} \mathrm{ABKLA}
$$

$=$ area of $\square \mathrm{ABC}+$ area of rectangle BCLK

$$
\boldsymbol{W}_{A B}=\frac{1}{2} B C \times A C+\boldsymbol{K} \times \boldsymbol{L} C
$$

Now, $\quad \boldsymbol{B C}=\boldsymbol{K} \mathbf{L}=4-1=3$ litre

$$
=3 \times 10^{-3} \boldsymbol{m}^{3}
$$

$$
\begin{aligned}
& \mathrm{AC}=4-2=2 \mathrm{Nm}^{-2} \\
& \mathrm{LC}=2-\mathbf{0}=2 \mathrm{Nm}^{-2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & W_{A B}=\frac{1}{2} \times 3 \times 10^{-3} \times 2+3 \times 10^{-3} \times 2 \\
& W_{A B}=9 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

(ii) Work done during the process from $B$ to $C$ (compression) is

$$
\begin{aligned}
& \mathbf{W}_{B C}=-\operatorname{area} \mathrm{BCLK}=-\mathrm{KL} \times \mathrm{LC} \\
& =-3 \times 10^{-3} \times 2=-6 \times 10^{-3} \mathrm{~J}
\end{aligned}
$$

(iii) Work done during the process from $\boldsymbol{C}$ to $\boldsymbol{A}$ As there is no change in volume of the gas in this process, therefore, $\mathbf{W}_{\mathrm{CA}}=0$

Net work done in the complete cycle

$$
\begin{aligned}
W & =W_{A B}+W_{B C}+W_{C A} \\
& =9 \times 10^{-3}+\left(-6 \times 10^{-3}\right)+0 \\
& =3 \times 10^{-3} \mathrm{~J} .
\end{aligned}
$$

Note :-
The same value of $\mathbf{W}$ is obtained when we take area of the triangle $A B C$ repressing the cyclic process.

